Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную
Векторная алгебра Системы линейных уравнений Интегральное исчисление функции одной переменной Вычисление площади криволинейной поверхности Типовые задачи

Решение систем линейных алгебраических уравнений методом Гаусса

Второй этап – обратный ход, заключается в решении треугольной системы. Из последнего уравнения находим xm. По найденному xm из (m-1) уравнения находим xm-1. Затем по xm-1 и xm из (m-2) уравнения находим xm-2. Процесс продолжаем, пока не найдем x1 из первого уравнения.

Если у нас число уравнений меньше числа неизвестных, то мы придем не к треугольной системе, а к ступенчатой.

так как прямой ход метода Гаусса прервется, когда уравнения закончатся, а неизвестные еще останутся. В таком случае в каждом уравнении системы перенесем все члены с неизвестными xk+1,….,xm в правую часть.

Придавая неизвестным xk+1,….,xm (называемым свободными) произвольные значения, получим треугольную систему из которой последовательно найдем все остальные неизвестные (называемые базисными). Так как произвольные значения можно придавать любыми способами, система будет иметь бесчисленное множество значений.

Тройные интегралы в цилиндрических координатах Вычислить интеграл       где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1

В решении следующего примера не будем выписывать каждую систему, а ограничимся лишь преобразованиями над матрицами:

и

Такая модификация метода называется методом Жордана-Гауcса.


Математика решение задач