Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную
Эвольвентная зубчатая передача  Кулачковые механизмы. Волновые передачи Анализ машинного агрегата Эвольвентная зубчатая передача и ее свойства

Подбор чисел зубьев по методу сомножителей.

 Рассмотрим один из методов, используемых при подборе чисел зубьев планетарного редуктора, - метод сомножителей. Метод позволяет объединить в расчетные формулы некоторые из условий подбора (условия 1, 2, 5 и 6) . Выполнение остальных условий для выбранных чисел зубьев проверяется. Из первого условия выразим внутреннее передаточное отношение механизма. Внутренним называют передаточное отношение механизма при остановленном водиле, то есть механизма с неподвижными осями или рядного механизма.

  u14 h = (z2×z4)/(z1×z3) = [ u1h / ( 0.95 … 1.05 ) – 1] = (B × D)/(A × C).

 Разложим внутреннее передаточное отношение u14 h на сомножители - некоторые целые числа A, B, C и D. При этом сомножитель A соответствует числу зубьев z1, B - z2, C - z3 и D - z4 . Сомножители могут быть произвольными целыми числами, комбинация (B × D)/(A × C) которых равна u14 h . Для рассматриваемой схемы желательно придерживаться следующих диапазонов изменения  отношений между сомножителями Базы в машиностроении Констpуктивный элемент детали, от котоpого ведется отсчет pазмеpов детали, называется базой. Это может быть повеpхность или линия (осевая, центpовая).

 B / A = z2 / z1 = 1 … 6 - внешнее зацепление ; 

 D / C = z4 / z3 = 1.1 … 8 – внутреннее зацепление .

Включим в рассмотрение условие соосности

 z1 + z2 = z4 - z3

и выразим его через сомножители

 a×( A + B) = b×( D – C ).

 Если принять, что коэффициенты a и b  равны

 a = ( D – C ), b = (A + B),

то выражение превращается в тождество. Из этого тождества можно записать

 z1= ( D – C ) × A × q ; z3= ( A + B ) ×× q ;

 z2= ( D – C ) × B × q ; z4= ( A + B ) ×× q ;

где q - произвольный множитель, выбором которого обеспечиваем выполнение условий 5 и 6.

 Зубья колес планетарного механизма, рассчитанные по этим формулам, удовлетворяют условиям 1, 2, 5 и 6. Проверяем эти зубья по условиям 3 (соседства) и 4 (сборки) и если они выполняются, считаем этот вариант одним из возможных решений. Если после перебора рассматриваемых сочетаний сомножителей получим несколько возможных решений, то проводим их сравнение по условию 7. Решением задачи будет сочетание чисел зубьев, обеспечивающее габаритный минимальный размер R.

 Примеры подбора чисел зубьев для типовых планетарных механизмов.

  1. Двухрядный планетарный редуктор с одним внешним и с одним внутренним зацеплением.

  Дано: Схема планетарного механизма; u1h = 13; k = 3;

 _________________________________________________

  Определить: zi - ?

Внутреннее передаточное отношение механизма

  u14 h = (z2×z4)/(z1×z3) = [ u1h / ( 0.95 … 1.05 ) – 1] = 12 = (B × D)/(A × C) = 3×4/ (1×1) = 2×6/ (1×1)= 4×3/ (1×1) = ...

Для первого сочетания сомножителей

 z1= ( D – C ) ×  A × q = ( 4 – 1 ) × 1 × q = 3× q ; z1= 18 > 17;

  z2= ( D – C ) × B × q = ( 4 – 1 ) × 3 × q = 9× q ; q = 6; z2= 54 > 17;

  z3= ( A + B ) ×× q = ( 3 + 1 ) × 1 × q = 4× q; z3= 24 > 20;

  z4= ( A + B ) ×× q = ( 3 + 1 ) × 4 × q = 16× q; z4= 96 > 85;

Проверка условия соседства

 sin ( p/k ) > max [( z2,3 + 2)/ (z1 + z2) ];

  sin ( p/3 ) > (54 + 2)/(18+54); 0.866 > 0.77 - условие выполняется.

Проверка условия сборки

 ( u1h × z1 / k ) × ( 1 + k × р) = B;

 (13×18/3) ×( 1 + 3 р) = В – целое при любом р .

Условие сборки тоже выполняется. То есть, получен первый вариант решения.

Габаритный размер R = (18 + 2× 54) = 126.

Для второго сочетания сомножителей

  z1= ( D – C ) × A × q = ( 6 – 1 ) × 1 × q = 5× q ; z1= 45 > 17;

  z2= ( D – C ) × B × q = ( 6 – 1 ) × 2 × q = 10× q ; q = 9; z2= 90 > 17;

  z3= ( A + B ) ×× q = ( 2 + 1 ) × 1 × q = 3× q; z3= 27 > 20;

  z4= ( A + B ) ×× q = ( 2 + 1 ) × 6 × q = 18× q; z4= 162 > 85;

Проверка условия соседства

 sin ( p/k ) > max [( z2,3 + 2)/ (z1 + z2) ];

  sin ( p/3 ) > (90 + 2)/(45+90); 0.866 > 0.681 - условие выполняется.

Проверка условия сборки

 ( u1h × z1 / k ) × ( 1 + k × р) = B;

 (12×45/3) ×( 1 + 3 р) = В – целое при любом р .

Условие сборки тоже выполняется и получен второй вариант решения.

Габаритный размер R = (45 + 2× 90) = 225.

Для третьего сочетания сомножителей

  z1= ( D – C ) × A × q = ( 3 – 1 ) × 1 × q = 2× q ; z1= 18 > 17;

  z2= ( D – C ) × B × q = ( 3 – 1 ) × 4 × q = 8× q ; q = 9; z2= 72 > 17;

  z3= ( A + B ) ×× q = ( 1 + 4 ) × 1 × q = 5× q; z3= 45 > 20;

  z4= ( A + B ) ×× q = ( 1 + 4 ) × 3 × q = 15× q; z4= 135 > 85;

Проверка условия соседства

 sin ( p/k ) > max [( z2,3 + 2)/ (z1 + z2) ];

  sin ( p/3 ) > (70 + 2)/(18+72); 0.866 > 0.8 - условие выполняется.

Проверка условия сборки

 ( u1h × z1 / k ) × ( 1 + k × р) = B;

 (13×18/3) ×( 1 + 3 р) = В – целое при любом р .

Условие сборки тоже выполняется и получен третий вариант решения.

Габаритный размер R = (18 + 2× 72) = 162.

Из рассмотренных трех вариантов габаритный наименьший размер получен в первом. Этот вариант и будет решением нашей задачи.


Теория машин и механизмов