Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную
Общая характеристика протоколов локальных сетей Технология Fast Ethernet

Технология l00VG-AnyLAN

В качестве альтернативы технологии Fast Ethernet, фирмы AT&T и HP выдвинули проект новой технологии со скоростью передачи данных 100 Мбит/с - 100Base-VG. В этом проекте было предложено усовершенствовать метод доступа с учетом потребности мультимедийных приложений и при этом сохранить совместимость формата пакета с форматом пакета сетей 802.3. В сентябре 1993 г. по инициативе фирм IBM и HP был образован комитет IЕЕ 802.12, который занялся стандартизацией новой технологии. Проект был расширен за счет поддержки в одной сети кадров не только формата Ethernet, но и формата Token Ring. В результате новая технология получила название l00VG-AnyLAN, т. е. технология для любых сетей (Any LAN - любые сети), имея в виду, что в локальных сетях технологии Ethernet и Token Ring используются в подавляющем количестве узлов. В 1995 г. технология l00VG-AnyLAN получила статус стандарта IЕЕЕ 802.12.

В технологии l00VG-AnyLAN определены новый метод доступа Demand Priority и новая схема квартетного кодирования Quartet Coding, использующая избыточный код 5В/6В.

Метод доступа Demand Priority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Метод Demand Priority повышает пропускную способность сети за счет введения детерминированного доступа к общей среде, использующего два уровня приоритетов: низкий - для обычных приложений и высокий - для мультимедийных.

Структура сети l00VG-AnyLAN. Сеть l00VG-AnyLAN всегда включает центральный концентратор, называемый концентратором уровня 1 или корневым концентратором (рисунок 69). Корневой концентратор имеет связи с каждым узлом сети, образуя топологию «звезда». Он представляет собой интеллектуальный центральный контроллер, который управляет доступом к сети, постоянно выполняя цикл кругового сканирования своих портов и проверяя наличие запросов на передачу кадров от присоединенных к ним узлов. Концентратор принимает кадр от узла, выдавшего запрос, и передает его только через тот порт, к которому присоединен узел с адресом, совпадающим с адресом назначения, указанным в кадре. -

Рис. 69. Структура сети l00VG-AnyLAN

Каждый концентратор может быть сконфигурирован на поддержку либо кадров 802.3 Ethernet, либо кадров 802.5 Token Ring. Все концентраторы, расположенные в одном и том же логическом сегменте (не разделенном мостами, коммутаторами или маршрутизаторами), должны быть сконфигурированы на поддержку кадров одного типа. Для соединения сетей l00VG-AnyLAN (рис. 69), использующих разные форматы кадров 802.3, необходим мост, коммутатор или маршрутизатор. Аналогичное устройство требуется и в том случае, когда сеть l00VG-AnyLAN соединяется с сетью FDDI или ATM.

Каждый концентратор имеет один «восходящий» (up-link) порт и N «нисходящих» портов (down-link), как это показано на рис. 70.

Восходящий порт работает как порт узла, но он зарезервирован для присоединения в качестве узла к концентратору более высокого уровня. Нисходящие порты служат для присоединения узлов, в том числе и концентраторов нижнего уровня. Каждый порт концентратора может быть сконфигурирован для работы в нормальном режиме или в режиме монитора. Порт, сконфигурированный для работы в нормальном режиме, передает только те кадры, которые предназначены узлу, подключенному к данному порту. Порт, сконфигурированный для работы в режиме монитора, передает все кадры, обрабатываемые концентратором. Такой порт может использоваться для подключения анализатора протоколов.

Узел представляет собой компьютер или коммуникационное устройство технологии l00VG-AnyLAN: мост, коммутатор, маршрутизатор или концент ратор. Концентраторы, подключаемые как узлы, называются концентраторами 2- и 3-го уровней. Разрешается образовывать до трех уровней иерархии концентраторов.

Рис. 70. Круговой опрос портов концентраторами сети 100VG-AnyLAN

Связь, соединяющая концентратор и узел, может быть образована либо 4 парами неэкранированной витой пары категорий 3,4 или 5 (4UTP Cat 3,4, 5), либо 2 парами неэкранированной витой пары категории 5 (2UTP Cat 5), либо 2 парами экранированной витой пары типа 1 (2STP Туре 1), либо 2 парами многомодового оптоволоконного кабеля.

Варианты кабельной системы можно использовать любые. Наибольшее распространение получил первый разработанный вариант 4UTP.

В табл. 3.5 приведены результаты сравнения этой технологии с технологиями 10Base-T и 100Base-T.

Структура стека протоколов технологии l00VG-AnyLAN согласуется с архитектурными моделями OSI/ISO и IЕЕ, в которых канальный уровень разделен на подуровни. Стек протоколов технологии lOOVG-AnyLAN состоит из подуровня доступа к среде (MAC — Media Access Control), подуровня, не зависящего от физической среды (PMI - Physical Media Independent) и подуровня, зависящего от физической среды (PMD - Physical Media Dependent).

Функции уровня MAC включают реализацию протокола доступа Demand Priority, подготовку линии связи и формирования кадра соответствующего формата.

Метод Demand Priority (приоритетный доступ по требованию) основан на том, что узел, которому нужно передать кадр по сети, передает запрос (требование) на выполнение этой операции концентратору. Каждый запрос может иметь либо низкий, либо высокий приоритеты. Высокий приоритет отводиться для трафика чувствительных к задержкам мультимедийных приложений.

Высокоприоритетные запросы всегда обслуживаются раньше низкоприоритетных. Требуемый уровень приоритета кадра устанавливается протоколами верхних уровней, не входящими в технологию l00VG-AnyLAN, например, Real Audio, и передается для отработки уровню MAC.

Как показано на рис. 70, концентратор уровня 1 постоянно сканирует запросы узлов, используя алгоритм кругового опроса (round-robin). Это сканирование позволяет концентратору определить, какие узлы требуют передачи кадров через сеть и каковы их приоритеты.

В течение одного цикла кругового сканирования каждому узлу разрешается передать один кадр данных через сеть. Концентраторы, присоединенные как узлы к концентраторам верхних уровней иерархии, также выполняют свои циклы сканирования и передают запрос на передачу кадров концентратору. Концентратор нижнего уровня с N портами имеет право передать N кадров в течение одного цикла опроса.

Каждый концентратор ведет отдельные очереди для низкоприоритетных и высокоприоритетных запросов. Низкоприоритетные запросы обслуживаются только до тех пор, пока не получен высокоприоритетный запрос. В этом случае текущая передача низкоприоритетного кадра завершается и обрабатывается высокоприоритетный запрос. Перед возвратом к обслуживанию низкоприоритетных кадров должны быть обслужены все высокоприоритетные запросы. Чтобы гарантировать доступ для низкоприоритетных запросов в периоды высокой интенсивности поступления высокоприоритетных запросов, вводится порог ожидания запроса. Если у какого-либо низкоприоритетного запроса время ожидания превышает этот порог, то ему присваивается высокий приоритет.

Важными направлениями использования Интернета являются Интернет-телефония (IP-телефония) – передача телефонных разговоров и факсов по Интернету в кодировке, соответствующей протоколу IP, трансляция по Интернету радио- и телевизионных передач, беспроводное подключение к Интернету с мобильных телефонов: непосредственно по протоколу WAP (Wireless Application Protocol – протокол беспроводных приложений), или через компьютер по протоколу GPRS (General Packet Radio Service).

Шифрование передаваемой по Интернету информации обеспечивается протоколом SSL (Secured Socket Layer).

III.Адресация в Интернете.

Каждый компьютер, подключенный к Интернет, получает уникальный (неповторяющийся) IP-адрес (то есть адрес, соответствующий протоколу IP). При постоянном подключении этот адрес закреплен за ним, при временном – выделяется временный (динамический) адрес на сеанс*.

Физический IP-адрес представляет собой 32-битное (4-х байтное) двоичное число, которое принято записывать, переводя каждый байт в десятичное число, и разделяя их точками. Это число кодирует сеть, через которую компьютер входит в Интернет, и номер компьютера в сети. В зависимости от допустимого числа компьютеров сети разделяются на три класса:

Класс

Адрес сети

Адрес компьютера
в сети

Макс. число компьютеров в сети

Первое число IP-адреса

A

0

7 бит

24 бита

224 – 2 = 16 777 214

0 – 126

B

1

0

14 бит

16 бит

216 – 2 = 65 534

128 – 191

C

1

1

0

21 бит

8 бит

28 – 1 = 254

192 – 223

Например, адрес 197.98.140.101 соответствует номеру узла 0.0.0.101 в сети 197.98.140.0 класса C.

Несколько IP-адресов зарезервировано для специальных целей, например, адрес 127.0.0.0–127.0.0.255 обеспечивает обращение пользователя к себе самому (используется для тестирования программ). Номер сети с номером компьютера, равным 0, обозначает всю эту сеть, а с максимально возможным номером (255 для сети C) – используется для широковещательного сообщения, отправляемого всем компьютерам сети.

Функции подуровней. Уровень MAC получает кадр от уровня LLC и добавляет к нему адрес узла-источника, дополняет поле данных байтами-заполнителями до минимально допустимого размера, если это требуется, а затем вычисляет контрольную сумму и помещает ее в соответствующее поле. После этого кадр передается на физический уровень.

Технология Token Ring (802.5) Основные характеристики технологии Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо в технологии Token Ring рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Форматы кадров Token Ring В сетях Token Ring используются три основных типа кадров

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет. Такое устройство можно считать простым кроссовым блоком за одним исключением - MSAU обеспечивает обход какого-либо порта, когда присоединенный к этому порту компьютер выключают.


Технология Fast Ethernet