Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную
Кабельные системы для скоростной передачи данных Основные сервисы сетевой среды Internet

Физические характеристики волоконно-оптических передающих сред

Основные элементы оптического волокна

Ядро – светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.

Демпфер. Назначение демпфера - обеспечение более низкого коэффициента преломления на границе с ядром для переотражения света в ядро таким образом, чтобы световые волны распространялись по волокну.

Оболочка. Оболочки обычно бывают многослойными, изготавливаются из пластика для обеспечения прочности волокна, поглощения ударов и обеспечения дополнительной защиты волокна от воздействия окружающей среды. Такие буферные оболочки имеют толщину от 250 до 900 мкм.

Размер волокна в общем случае определяется по внешним диаметрам его ядра, демпфера и оболочки. Например, 50/125/250 - характеристика волокна с диаметром ядра 50 мкм, диаметром демпфера 125 мкм и диаметром оболочки 250 мкм. Оболочка всегда удаляется при соединении или терминировании волокон.

Тип волокна идентифицируется по типу путей, или так называемых "мод", проходимых светом в ядре волокна. Существует два основных типа волокна - многомодовое и одномодовое. Ядра многомодовых волокон могут обладать ступенчатым или градиентным показателями преломления. Многомодовое волокно со ступенчатым показателем преломления получило свое название от резкой, ступенчатой, разницы между показателями преломления ядра и демпфера.

В более распространенном многомодовом волокне с градиентным показателем преломления лучи света также распространяются в волокне по многочисленным путям. В отличие от волокна со ступенчатым показателем преломления, ядро с градиентным показателем содержит многочисленные слои стекла, каждый из которых обладает более низким показателем преломления по сравнению с предыдущим слоем по мере удаления от оси волокна. Результатом формирования такого градиента показателя преломления является то, что лучи света ускоряются во внешних слоях и их время распространения в волокне сравнивается с временем распространения лучей, проходящих по более коротким путям ближе коси волокна.

Таким образом, волокно с градиентным показателем преломления выравнивает время распространения различных мод так, что данные по волокну могут быть переданы на более дальние расстояния и на более высоких скоростях до того момента, когда импульсы света начнут перекрываться и становиться неразличимыми на стороне приемника.

Волокна с градиентным показателем представлены на рынке с диаметрами ядра 50, 62,5 и 100 мкм.

Одномодовое волокно, в отличие от многомодового, позволяет распространяться только одному лучу или моде света в ядре. Это устраняет любое искажение, вызываемое перекрытием импульсов. Диаметр ядра одномодового волокна чрезвычайно мал - приблизительно 5 -10 мкм. Одномодовое волокно обладает более высокой пропускной способностью, чем любой из многомодовых типов. Например, подводные морские телекоммуникационные кабели могут нести 60000 речевых каналов по одной паре одномодовых волокон.

Затухание

Собственные потери оптического волокна. Свет является электромагнитной волной. Скорость света уменьшается при распространении по прозрачным материалам по сравнению со скоростью распространения света в вакууме. Волны инфракрасного диапазона также распространяются различно по оптическому волокну. Поэтому затухание, или потери оптической мощности, должны измеряться на специфических длинах волн для каждого типа волокна. Длины волн измеряются в нанометрах (нм).

Потери оптической мощности на различных длинах волн происходят в оптическом волокне вследствие поглощения, отражения и рассеяния. Эти потери зависят от пройденного расстояния и конкретного вида волокна, его размера, рабочей частоты и показателя преломления.

Величина потерь оптической мощности вследствие поглощения и рассеяния света на определенной длине волны выражается в децибелах оптической мощности на километр (дБ/км).

Волокна оптимизированы для работы на определенных длинах волн. Например, можно достичь потерь в 1 дБ/км для многомодового волокна 50/125 мкм на длине волны 1300 нм, и менее 3 дБ/км (50%-е потери мощности) для того же волокна на 850 нм. Эти два волновых региона, - 850 и 1300 нм, являются областями наиболее часто определяемыми для рабочих характеристик оптических волокон и используются современными коммерческими приемниками и передатчиками. Кроме того, одномодовые волокна оптимизированы для работы в регионе 1550 нм.

В коаксиальном кабеле, чем больше частота, тем больше уменьшается амплитуда сигнала с увеличением расстояния, и это явление называется затуханием. Частота для оптического волокна постоянна до тех пор, пока она не достигнет предела диапазона рабочих частот. Таким образом, оптические потери пропорциональны только расстоянию. Такое затухание в волокне вызвано поглощением и рассеиванием световых волн на неоднородностях, вызванных химическими загрязнениями, и на молекулярной структуре материала волокна. Эти микрообъекты в волокне поглощают или рассеивают оптическое излучение, оно не попадает в ядро и теряется. Затухание в волокне специфицируется производителем для определенных длин волн: например, З дБ/км для длины волны 850 нм. Это делается потому, что потери волокна изменяются с изменением длины волны.

Потери на микроизгибах. Без специальной защиты оптическое волокно подвержено потерям оптической мощности вследствие микроизгибов. Микроизгибы - это микроскопические искажения волокна, вызываемые внешними силами, которые приводят к потере оптической мощности из ядра. Для предотвращения возникновения микроизгибов применяются различные типы защиты волокна. Волокна со ступенчатым показателем относительно более устойчивы к потерям на микроизгибах, чем волокна с градиентным показателем.

Удалите адаптер из разъема USB.

Подождите несколько секунд и снова вставьте адаптер в разъем USB. Произойдет автоматическое подключение ноутбука клиента к беспроводной сети Wi-Fi и ноутбуку будут динамически присвоены IP-адрес и прочие сетевые настройки.

Для того, чтобы убедиться в том, что сетевые настройки были динамически присвоены, сделайте следующее:

Откройте «Пуск / Стандартные / Командная строка». Появится строка для ввода команд операционной системы.

Введите в строке команду:

ipconfig 

 и нажмите Enter

Эта команда отображает на экран настройки протокола TCP/IP вашего компьютера.

 Рис .4.

Если указанный командой IP-адрес компьютера находится в диапазоне 192.168.0.51 – 192.168.0.200, значит динамическая IP-адресация работает нормально.

В случае, если указанный командой IP-адрес компьютера НЕ находится в диапазоне 192.168.0.51 – 192.168.0.200), необходимо:

Произвеcти настройку сети заново, установив статический IP-адрес, затем, подключившись к точке доступа Wi-Fi проверьте, включен - ли DHCP-сервер и правильно - ли выставлены его параметры.

Если ошибка не исчезла – обратитесь к преподавателю.


Основные сервисы сетевой среды Internet