Интегрирование функций нескольких переменных Геометрические свойства интеграла ФНП Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную


Математика курсовые задачи примеры решений

Дифференцирование сложной ФНП

Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

совпадает с областью определения функции . Переменные ,  называем независимыми; ,  – промежуточными.

Число независимых и промежуточных переменных может быть различным.

Рассмотрим теорему о дифференцируемости сложной функции , . Ее доказательство и формула производной сложной функции может быть распространена на другие
виды сложной ФНП.

ТЕОРЕМА. Если

функция ,   – дифференцируемая в точке , , т.е. , причем ;

функция ,  – дифференцируемая в точке , , т.е. , причем ;

функция , , где

  – дифференцируемая в точке , где , ,
т.е. , где , причем ,

то сложная функция  дифференцируема
в точке .

Доказательство. Пусть , . Тогда
последовательно имеем

, где , , т.е. ;

аналогично .

Используя условие теоремы, можно записать

, поскольку

.

Здесь  в силу дифференцируемости функций ,  и  по условиям теоремы.

Заметим, что число

  –

производная рассматриваемой сложной функции  в точке .

Для вычисления производных сложной функции в общем случае нужно: 1) сложную функцию дифференцировать по независимым
переменным; 2) установить число независимых переменных (что
соответствует количеству возможных частных производных первого порядка сложной функции); 3) определить число промежуточных переменных (т.е. количество слагаемых в формуле для значения
каждой частной производной сложной функции).

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Диффенцирование неявно заданной функции Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Различают несколько постановок задачи на нахождение экстремума ФНП Исследовать на локальный экстремум .


Безопасность компьютерной сети Компьютерная безопасность Типовые задачи