Курсовые и лабораторные работы Математика решение задач Электротехника Лабораторные работы по электронике Физика Информатика На главную
Инженерная графика Строительная механика Машиностроительное черчение Курсовые и лабораторные работы Компьютерная математика

Задачи по сопротивлению материалов Строительная механика

Задача. Определить величины осевых моментов инерции относительно оси х для поперечных сечений, показанных на рис. 2.2.12.


Ответ: а), б), в), г), д)

 Задача 2.2.15. Найти положение центра тяжести площади поперечного сечения, представленного на рис. 2.2.13. Определить главные моменты инерции этого сечения.

 Ответ:

 Задача 2.2.16. Вычислить главные моменты инерции для сечения, показанного на рис. 2.2.14.


Ответ: Iy = Imax = 1172,62 см4; Imin = 122,11 см4.

 Задача 2.2.17. Вычислить главные моменты инерции поперечного сечения круглого бревна диаметром d и прямоугольного сечения бруса с b= = d/2, выполненного из этого бревна (рис. 2.2.15). Найти высоту h прямоугольного сечения бруса.

 Ответ:  Ix = Iy = 0,049087d4 (для круглого поперечного сечения), Ix = 0,02706d4; Iy = 0,009021d4 (для прямоугольного поперечного сечения).

 Задача 2.2.18. Найти положение центра тяжести С и вычислить главные моменты инерции поперечного сечения участка стены таврового сечения (см. рис. 2.2.16). Кладка выполнена из глиняного кирпича пластического прессования на растворе.

 Ответ: хс = 0,44 м;

 Задача 2.2.19. Найти положение центра тяжести и вычислить момент инерции для поперечного сечения, изображенного на рис. 2.2.17.


Ответ:

 Задача 2.2.20. Определить главные моменты инерции поперечного сечения, показанного на рис. 2.2.18. При решении задачи разрешается пользоваться табл. I «Геометрические характеристики некоторых плоских сечений» раздела IV.

 Ответ: Ix = 26086 см4; Iy = 3898 см4.

Осевые моменты инерции плоских составных сечений Для сложных составных поперечных сечений, не содержащих осей симметрии, предлагается следующий порядок расчета. Сначала вычерчивается поперечное сечение. Случайные оси х, у ставим так, чтобы все точки поперечного сечения находились в 1-м квадранте (рис. 2.3.1). Каждому прокатному профилю присваивается порядковый номер. Наносим местные оси координат хi, уi, проходящие через известные центры тяжести i–го профиля. Оси хi, уi параллельны случайным осям х, у соответственно.

  Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.3.1.1) под действием касательных напряжений τ. Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием.

Задача. Рассчитать количество заклепок диаметром d = 4 мм, необходимое для соединения двух листов двумя накладками (рис. 3.1.5). Материалом для листов и заклепок служит дюралюминий, для которого Rbs = 110 МПа, Rbр = 310 МПа. Сила F = 35 кН, коэффициент условий работы соединения γb = 0,9; толщина листов и накладок t = 2 мм.

Задача. Определить силу F, которую может воспринять заклепочное соединение, показанное на рис. 3.1.10. Диаметр заклепки d = 2см, толщина листов и накладки δ = 2,2см. Расчетные сопротивления материала листов и заклепок равны: на срез Rbs = = 200 МПа, на смятие Rbр = 500 МПа, коэффициент условий работы соединения γb = 0,8.

Дополнительные задачи на сдвиг Задачи на сдвиг встречаются не только при расчете заклепочных и болтовых соединений. Имеются и другие элементы конструкций, испытывающие деформацию сдвига, и поэтому при их расчете необходимо всякий раз удовлетворять условию прочности на срез


Задачи по сопротивлению материалов